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Stability of two-dimensional spatial solitons in nonlocal nonlinear media
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We discuss the existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear
response. We show that such systems, which include thermal nonlinearity and dipolar Bose-Einstein conden-
sates, may support a variety of stationary localized structures, including rotating dipole solitons. We also
demonstrate that the stability of these structures critically depends on the spatial profile of the nonlocal
response function.
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I. INTRODUCTION

A spatial optical soliton is a beam which propagates in a
nonlinear medium without changing its structure. The forma-
tion of solitons is a result of a balance between diffraction
caused by the finite size of the wave and nonlinear changes
of the refractive index of the medium induced by the wave
itself �1,2�. When this balance can be maintained dynami-
cally the soliton exists as a robust object withstanding even
strong perturbations. It appears that solitons, or solitary
waves, are ubiquitous in nature and have been identified in
many other systems such as plasma, matter waves, or classi-
cal field theory.

Solitons have been typically considered in the context of
so-called local nonlinear media. In such media the refractive
index change induced by an optical beam in a particular
point depends solely on the beam intensity in this very point.
However, in many optical systems the nonlinear response of
the medium is actually a spatially nonlocal function of the
wave intensity. This means that the index change in a par-
ticular point depends on the light intensity in a certain neigh-
borhood of this point. This occurs, for instance, when the
nonlinearity is associated with some sort of transport pro-
cesses such as heat conduction in media with thermal re-
sponse �3–6�, diffusion of charge carriers �7,8�, or atoms or
molecules in atomic vapors �9,10�. It is also the case in sys-
tems exhibiting a long-range interaction of constituent mol-
ecules or particles such as in nematic liquid crystals �11–14�
or dipolar Bose-Einstein condensates �15–19�. Nonlocality is
thus a feature of a large number of nonlinear systems leading
to novel phenomena of a generic nature. For instance, it may
promote modulational instability in self-defocusing media
�20–23�, as well as suppress wave collapse of multidimen-
sional beams in self-focusing media �5,24,25�. Nonlocal non-
linearity may even represent parametric wave mixing, in
both the spatial �26� and spatiotemporal domains �27� where
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it describes the formation of the so called X waves. Further-
more, nonlocality significantly affects soliton interactions
leading to the formation of bound states of otherwise repel-
ling bright or dark solitons �28–31�. It has been also shown
that nonlocal media may support the formation of stable
complex localized structures. They include multihump
�32,33� and vortex ring solitons �34,35�.

The robustness of nonlocal solitons has been attributed to
the fact that by its nature, nonlocality acts as some sort of
spatial averaging of the nonlinear response of the medium.
Therefore perturbations, which normally would grow quickly
in a local medium, are being averaged out by nonlocality,
ensuring a greater stability domain of solitons �34,36�. How-
ever, it turns out that such an intuitive physical picture of
nonlocality-mediated soliton stabilization, which was earlier
confirmed in studies of modulational instability and beam
collapse, has only limited validity. Recent works by Yaki-
menko et al. �35�, Xu et al. �37�, and Mihalache et al. �38�
demonstrated that even a high degree of nonlocality may not
guarantee the existence of stable high-order soliton struc-
tures.

In this work we investigate the propagation of finite
beams in nonlocal nonlinear media. We demonstrate that
while nonlocality does stabilize solitons, the stability domain
is strongly affected by the actual form of the spatial nonlo-
cality.

This paper is organized as follows: In Sec. II we introduce
the mathematical models under consideration and the ansatz
for the solutions we are interested in. Section III deals with
spatial optical solitons in media with a thermal nonlinearity.
A remarkably robust new type of rotational soliton is pre-
sented. In Sec. IV we treat the more complicated case of
two-dimensional solitons in dipolar Bose-Einstein conden-
sates �BEC’s�. Due to the mixture of local and nonlocal types
of nonlinearity a variety of solutions can be stabilized. Fi-
nally, in Sec. V we discuss the observed dynamics of the
soliton structures.

II. MODEL EQUATIONS

We consider physical systems governed by the two-

dimensional nonlocal nonlinear Schrödinger �NLS� equation
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where � represents the spatially nonlocal nonlinear response
of the medium. Its form depends on the details of a particular
physical system. In the following we will consider three non-
local models.

The first one is rather unphysical but extremely instruc-
tive, the so-called Gaussian model of nonlocality. In this
model � is given as

� =
1

2�
� � e−�r� − r���2/2���r��,z��2d2r��. �2�

In spite of the fact that there is no known physical system
which would be described by a Gaussian response, this
model has served as a phenomenological example of a non-
local medium, enabling, thanks to its form, an analytical
treatment of the ensuing wave dynamics.

The second model, referred to as thermal nonlinearity,
describes, for instance, the effect of plasma heating on the
propagation of electromagnetic waves �3� as well as the ori-
entational nonlinearity of nematic liquid crystals �12�. In this
case � is governed by the following diffusion-type equation
�3,4�:

� − � �2

�x2 +
�2

�y2�� = ���2, �3�

which is valid for the typical spatial diffusion scale large
compared to the operating wavelength �3,35,39�. Solving for-
mally Eq. �3� in Fourier space yields

� =
1

2�
� � K0��r� − r�������r��,z��2d2r��, �4�

where K0 is the modified Bessel function of the second kind
and r�=xe�x+ye�y denotes the transverse coordinates.

The third system considered here is the model of a dipolar
Bose-Einstein condensate where the nonlocal character of
the interatomic potential is due to a long-range interaction of
dipoles �40�. Such a condensate has been realized recently in
experiments with chromium atoms which exhibit a strong
magnetic-dipole moment �16�. Considering only two trans-
verse dimensions and time �which plays a role analogous to
that of the propagation variable z� one arrives at the follow-
ing formula �19�:

� = ����2 +
1

2�
� � R��r� − r�������r��,z��2d2r�� �5�

and

R =� � 1 − 	�kek2
erfc�k�

2�
ei�kxx+kyy�dkxdky , �6�

with k=	kx
2+ky

2 and erfc being the complementary error
function �19,41�. Interestingly, this model contains both local
and nonlocal components. The parameter � controls the sign
as well as the relative strength of the local component of
nonlinearity. This model is somewhat controversial, and its

validity has been recently questioned �42�. However, this is-
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sue is beyond the scope of this paper and we consider Eq. �5�
here in its own right, as another example of nonlocal nonlin-
earity.

Note that the above three models are represented in di-
mensionless form. This means that only the spatial extent of
the actual solution � determines whether one operates in a
“local” ����2 varies slowly over the transverse lengths of the
order unity� or “strongly nonlocal” ����2 changes fast� re-
gime. The “conventional” degree of nonlocality, the actual
width of the response function, is scaled out.

It is known that the thermal model �Eq. �3�� permits, apart
from the ground state, stable single-charge vortex solutions
only, whereas multicharge vortices appear to be unstable
�35�. In contrast, when a Gaussian response function is used
�Eq. �2��, also stable multicharged vortices may exist �34�.
Figure 1 illustrates the nonlocal response functions for the
two physically relevant systems introduced above and, as a
comparison, the �unphysical� Gaussian response. It is obvi-
ous that the thermal and condensate response functions ex-
hibit qualitatively the same spatial character. Therefore, one
can expect a similar behavior of solitary solutions for beams
in media with thermal nonlinearities and matter waves in
dipolar BEC’s, especially with respect to their stability.

In the following analysis we will be interested in two
classes of nonlinear localized solutions: classical solitons
with stationary intensity and phase distribution and a new
recently introduced type of rotating solution, the so-called
“azimuthons” �43�. In the case of the standard solitons we
are looking for stationary solutions in the form

��r,�,z� = U�r,��ei�z, �7�

where � is the propagation constant. Here we changed from
Cartesian to cylindrical coordinates for technical conve-
nience. In the highly nonlocal limit the soliton profile
�U�2�r ,�� is expected to be very narrow compared to the
width of the response function �which is a fixed quantity in
our dimensionless system�. Under this condition, for the
Gaussian response the nonlinear term, Eq. �2�, can be repre-
sented in simplified form �25�

� =
1

2�
P0 exp�− r2/2� , �8�

where P0=
�U�2d2r� is the total power. Now the nonlinear
Schrödinger equation �1� becomes linear and local. It de-

FIG. 1. Nonlocal response functions for thermal nonlinearities
�K0� and dipolar BEC’s �R�. For comparison, a Gaussian response
function is shown, too.
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scribes the evolution of an optical beam trapped in an effec-
tive waveguide structure �“potential”� with the profile given
by the Gaussian nonlocal response function. This highly non-
local limit was first explored by Snyder and Mitchell in the
context of the “accessible solitons” �44�. In our scaling the
strongly nonlocal limit corresponds to a high power P0→�.
Large power P0 means now a deep potential −� in Eq. �1�
and stronger confinement of modes �solitons� in the vicinity
of r=0. We exploit this accessibility character of the solitons
in our numerical scheme �see the Appendix�.

The second class of solutions we deal with, the azimuth-
ons, are a straightforward generalization of the ansatz �7�.
They represent spatially rotating structures and hence in-
volve an additional parameter, the rotation frequency �:

��r,�,z� = U�r,� − �z�ei�z. �9�

For �=0, azimuthons become ordinary �nonrotating� soli-
tons. For example, the most simple family of azimuthons is
the one connecting the dipole soliton with the single-charged
vortex soliton �for fixed propagation constant ��. The single-
charged vortex consists of two dipole-shaped structures in
the real and imaginary parts of U with equal amplitude. If
these two amplitudes are different, we have a rotating azimu-
thon; if one of the amplitudes is zero, we have the dipole
soliton. In the following we will refer to this amplitude ratio
in terms of the modulation depth

n =
�max Re U − max Im U�

max�U�
. �10�

In the case of a Gaussian nonlocal response function, for
instance, the azimuthons arise naturally again via the fact
that �= P0 exp�−r2 /2� /2� for high powers. Since Eq. �1� be-
comes linear, solitons will converge to the linear modes of
the corresponding potential −�. In this strongly nonlocal
limit azimuthons, as introduced above, will converge to two
degenerate dipole modes with the phase difference of � /2
and unequal amplitudes. As pointed out in �43�, the rotation
frequency � is determined by the amplitude ratio of the two
degenerate modes �modulation depth� and, of course, the
propagation constant �.

III. BEAM PROPAGATION IN MEDIA WITH A THERMAL
NONLINEARITY

Let us first have a look at Eqs. �1� and �4�. It is known that
in the local classical NLS equation, no stable stationary state
exists. Finite beams either diffract if their power is too low or
experience catastrophic collapse if their power exceeds a cer-
tain threshold. However, it has been already shown that in
the case of the nonlocal NLS equation the catastrophic col-
lapse is arrested and fundamental-type solitons can be stabi-
lized. Moreover, it turns out that for a sufficiently high de-
gree of nonlocality �in our scaling this is equivalent to
sufficiently high power�, even the single-charged vortex is
reported to become stable �35�. In fact, it is so far the only
known stable stationary solution in this system, apart from
the fundamental, single-peak soliton. Indeed, Fig. 2 shows

that for power P0=2000 the single-charged vortex state is
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stable, while for P0=200 and P0=500 it decays after a cer-
tain propagation distance. Of course, strictly speaking, we
cannot claim stability from numerical propagation experi-
ments, since we can propagate beams over finite distances
only. However, from our results we can at least infer that the
potential growth rates of unstable internal modes are very
small. For instance, the vortex state in Fig. 2�c� was stable
over more than 106 numerical z steps. The small periodic
oscillations visible in some of the curves of numerical figures
are due to the excitation of stable internal modes of the so-
lution by perturbations of the initial data. In fact, since we
use approximate solutions computed by the method de-
scribed in the Appendix, we always deal with perturbed ini-
tial data.

Both vortices with P0=200 and P0=500 are unstable, but
their decay dynamics are quite different. The one with lower
power �Fig. 2�a�� breaks up into two ground-state solitons,
which move away from the center once formed which is a
typical instability scenario for the local NLS equation. In
contrast, for higher powers �or, conversely, stronger nonlo-
cality� the vortex initially breaks up and later fuses to a
single ground-state solution emitting remnants of its original
structure �see Fig. 2�b��. This behavior can be explained by
the nonlocality-induced broad single waveguide �or attrac-
tive potential� which prevents fragments from leaving �un-

FIG. 2. Dynamics of the vortex states in the thermal model: �a�
unstable propagation at P0=200, profiles are shown in an xy box of
about 5	5; �b� unstable propagation at P0=500, profiles are shown
in an xy box of about 3	3; �c� stable propagation at P0=2000,
profiles are shown in an xy box of about 1.5	1.5.
like the breakup in local medium�.
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The decay behavior of the P0=500 vortex indicates an
effective power flux towards the center. Hence, one might
expect that a rotation of the object could somehow balance
this contraction. As mentioned in Sec. II, we are not looking
at classical solitons only, but also at rotating azimuthons. At
each power level P0 we expect a family of azimuthons, al-
lowing a continuous transition from the single charged vor-
tex �modulation depth n=0� to the flat-phased dipole state
�modulation depth n=1�. It turns out that the idea that the
rotation of the azimuthon might balance the contractive
forces destroying the vortex is indeed correct �36�. Figure
3�b� shows that an azimuthon can be stable at power levels,
where normally the vortex decays, collapsing into a funda-
mental soliton �P0=500�. This shows that azimuthons are
more robust than vortices in this system. Hence, the azimu-
thons may be easier to realize than vortices in future attempts
at experimental observation of higher-order nonlinear beams
in media with thermal nonlinearity.

In our extensive numerical simulations of the thermal
model we were not able to observe any stable, nonrotating
dipole states. Even at higher powers �stronger nonlocality�
the simple dipole state remained unstable. Moreover, we did
not observe any decrease of the observed growth rates with
increasing powers �shift of the breakup point to larger values
of z�. Also higher-order states like quadrupole, etc., were
found to be always unstable in this system.

We would like to stress that Eq. �3� is referred to as a
thermal model, but has a finite range of nonlocality. In con-
trast, the thermo-optic nonlinearity of liquids and solids is
governed by the standard heat equation, which has an infinite
range of nonlocality. In such materials with infinite range of
nonlocality the nonlinear response is evidently strongly in-
fluenced by the size and shape of the medium �6�. Since the
presence of boundary conditions imposes additional con-

FIG. 3. Dynamics of azimuthons in thermal model of nonlinear-
ity. Modulation depth n=0.5: �a� stable propagation at P0=500,
rotating with ��4.9, profiles are shown in an xy box of about 3
	3; �b� stable propagation at P0=2000, rotating with ��11, pro-
files are shown in an xy box of about 1.5	1.5.
straints on the conditions for the formation of localized struc-
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tures and solitons, they are expected to affect their stability
as well. However, this issue is beyond the scope of this work.

IV. TWO-DIMENSIONAL DIPOLAR BOSE-EINSTEIN
CONDENSATES

Compared to the previous system, the system of equations
�1� and �5� is more complicated. A free parameter � is in-
volved, which controls both the sign and relative strength of
an additional local contribution to the nonlinear response.
Let us first consider the case �=0. It turns out that in this
case the system behaves qualitatively like the thermal model
discussed in the preceding section. The azimuthons are found
to be the most robust objects �apart from the stable ground
state�, and we observe the same stabilizing-by-rotation
mechanism as above. The vortex at P0=1000 shrinks to form
a single ground-state solution �Fig. 4�a��, whereas the rotat-
ing azimuthon at the same power level is stable due to its
rotation �Fig. 4�b��. When we increase the power sufficiently
the vortex state also becomes stable �Fig. 5�a��, as expected.

The local part of the nonlinearity �Eq. �5�� can be of either
focusing or defocusing nature, depending on the sign of the
coefficient �. If � is positive, stable solutions become un-
stable for � large enough. E.g., if we fix the power P0
=1000, the azimuthon with modulation depth n=0.5 �stable
for �=0; see Fig. 4�b�� turns out to be unstable already at
�=0.01. On the other hand, if � is negative, the otherwise
unstable solutions can be stabilized. Figure 5�b� shows the
stable vortex state at P0=1000, �=−0.05, but the corre-
sponding vortex state at �=0 is unstable �see Fig. 4�a��.
Moreover, while playing with the parameter � we might
even stabilize the dipole state, as shown in Fig. 6�b�. This is
remarkable, since the dipole seems to be always unstable if
�=0 �Fig. 6�a��, even for higher powers, and also in the

FIG. 4. Dynamics of localized structures in a BEC nonlinear
model �Eq. �5��. Power P0=1000, �=0: �a� unstable vortex state;
�b� stable azimuthon, rotating with ��5.1, modulation depth n
=0.5. All profiles are shown in an xy box of about 4	4.
system considered in Sec. III. However, the parameter �
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files are shown in an xy box of about 5	5.
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needs to be tuned carefully. If it is too large in absolute
value, the stabilization mechanism fails �see Fig. 6�c��.

In a last example we show that even higher-order solitons
which are not related to the single-charged vortex �like the
dipole� can be stabilized. The double-charge vortex turns out
to be stable with a small defocusing local contribution ��=
−0.03�, as revealed by Fig. 7. A systematic study of the sta-
bility of other higher-order solitons is beyond the scope of
this paper. However, it seems that systems featuring a strong
focusing nonlocal nonlinearity combined with a small local
contribution of defocusing nature are good candidates for the
observation of stable higher-order solitons.

V. DISCUSSION

The examples considered above clearly demonstrate that
the stability of higher-order nonlinear modes crucially de-
pends on the shape of the nonlocal response function. Briedis
et al. �34� suggested a very illustrative explanation as to why
for a Gaussian response function higher-order solitons can be
stable. In the strongly nonlocal limit �high powers�, the soli-
ton shape U becomes very narrow compared to the Gaussian
response function, Eq. �2� simplifies to Eq. �8�, and Eq. �1�
becomes linear and local. Hence we expect higher-order
states to become stable at high enough powers in the Gauss-
ian system. We may get at least some idea why in our physi-
cal systems �Eqs. �4� and �5�� higher-order solitons—e.g.,
multicharged vortices—are never stable: If we have a look at
Fig. 1, it is obvious that the argument of Briedis et al. �34�
breaks down for the response functions K0 and R. The sin-
gularity of these functions at r=0 does not permit a simpli-
fication of the convolution integral like in the case for the
Gaussian response function. No matter how narrow the soli-
ton shape U may be, it always feels the singularity of the
response functions K and R.

FIG. 7. Dynamics of double-charge vortex states in a BEC non-
local model with P0=2000: �a� unstable propagation, �=0, profiles
are shown in an xy box of about 4	4; �b� stable propagation, �=
−0.03, profiles are shown in an xy box of about 4	4.
FIG. 5. Stable vortex states in the BEC model: �a� stable propa-
gation at P0=5000, �=0, profiles are shown in an xy box of about
2	2; �b� stable propagation at P0=1000, �=−0.05, profiles are
FIG. 6. Dipole states of the BEC nonlocal model at P0=1000:
�a� unstable propagation, �=0, profiles are shown in an xy box of
about 4	4; �b� stable propagation, �=−0.03, profiles are shown in
an xy box of about 5	5; �c� unstable propagation, �=−0.05, pro-
0
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Even the role of local nonlinearity �parameter �� in the
dipolar BEC �Eq. �5�� can be understood in this context. If �
is positive, the focusing local contribution makes the singu-
larity of the response function �Eq. �5�� at r=0 “worse” and
therefore tends to destabilize nonlinear solutions. On the
other hand, for negative � the defocusing local contribution
may balance the destabilizing effect of the nonlocal part of
the response function.

A similar observation was reported recently by Xu et al.
�37� for the one-dimensional nonlocal NLS equation. In the
one-dimensional �1D� case, a thermal nonlinearity like Eq.
�4� leads to an exponential response function exp�−2�x��,
where x is the transversal coordinate. In the strongly nonlo-
cal regime for this exponential response only fundamental,
dipole, triple, and quadrupole states are reported to be stable,
whereas for the Gaussian response all higher-order states
turn out to be stable if the nonlocality is sufficiently high.
Again, we see that due to the noncontinuous first derivative
of exp�−2�x��, the argument of the Briedis et al. for stability
does not hold. For completeness we investigated numerically
several �unphysical� response functions in the 1D case. It
seems that smooth response functions like
exp�−x2�, sech�x�, 1 / �1+ �x�2�, etc., permit stable multipole
states of high order in the strongly nonlocal limit. In contrast,

FIG. 8. Approximate soliton solutions of Eqs. �1� and �2� for

P0=1000: �a� dipole state Ũ0 computed from �̃0= P0

	exp�−r2 /2� /2�, �b� dipole state Ũ6 after six iterations computed

from �̃6, �c� quadrupole state Ũ0 computed from �̃0= P0

	exp�−r2 /2� /2�, and �d� quadrupole state Ũ4 after four iterations

computed from �̃4. The insets show the maximum intensity Imax

=maxx,y���2 upon propagation, employing the approximate solution
as an initial condition.

FIG. 9. �a� �̃0= P0 exp�−r2 /2� /2� used to compute the approxi-

mate dipole and quadrupole states in Figs. 8�a� and 8�c�, �b� �̃6 used

to compute the approximate dipole state in Fig. 8�b�, and �c� �̃4 used

to compute the approximate quadrupole state in Fig. 8�d�.
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response functions with an apex at x=0 like exp�−2�x��,
1 / �1+2�x��2, or �n+1��1−	n �x�� /2, with �x�
1, n�1, allow
only stable monopole, dipole, triple, and quadrupole states in
this regime. If we choose a response function with a singu-
larity at x=0, like �1/	�x�−1� /2, at least also the quadrupole
state becomes unstable in the highly nonlocal regime. How-
ever, we can state that in both 2D and 1D, once the Briedis et
al. argument breaks down, even a strong nonlocality may not
stabilize solitons of sufficiently high order.

VI. CONCLUSIONS

In conclusion we discussed the propagation of two-
dimensional solitons in nonlocal nonlinear media. We con-
sidered two physical relevant systems—optical beams in me-
dia with a thermal nonlinearity and two-dimensional dipolar
Bose-Einstein condensates—and compared them with the
pure Gaussian nonlinear response which seems to support a
variety of stable solitons of high order. We demonstrated that
while nonlocality does stabilize solitons, the stability domain
is strongly affected by the actual form of the spatial nonlo-
cality. We showed that both physically relevant systems sup-
port stable propagation of a new type of rotating solitons. In
fact, our results suggest that these rotating structures are the
most stable higher-order nonlinear states in these systems
and might be even easier to realize experimentally than a
single-charge vortex or dipole solitons. Their appropriate in-
put intensity and phase spatial profiles can be easily prepared
using, for instance, a spatial light modulator. We also showed
that in the particular case of the BEC system, the mixture of
local and nonlocal responses stabilizes some higher-order lo-
calized states in certain parameter regions.
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APPENDIX: NUMERICAL ALGORITHM

In order to find stationary localized structures supported
by the nonlocal models, Eqs. �2�, �3�, and �5�, one must solve
the two-dimensional nonlinear Schrödinger equation with
corresponding nonlinear nonlocal term. In general, it is a
quite difficult task to compute stationary solutions in 2D,
especially when one cannot exploit certain symmetries, like,
e.g., cylindrical symmetry as in the case of vortices. Here,
we present a very fast and easy way to compute at least
approximate solutions, which relies on the so-called strongly
nonlocal limit which we will illustrate using the Gaussian
model.

In the strongly nonlocal limit finding the exact stationary
solution of the propagation equation reduces to the eigen-
value problem Av=�v, where vector v represents the dis-
cretized function U�r�� and A is a symmetric band matrix.

These facts can be exploited to compute selected eigenvalues
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and eigenvectors iteratively �see �45–47� for details�. Then,
using, for instance, a 128	128 mesh it takes only a few
seconds to obtain the desired solutions. Even if the condition
�= P0 exp�−r2 /2� /2� is not exactly fulfilled, the obtained
eigenvectors may be useful as approximate solutions. More-
over, it turns out that the following iterative process can be
used to significantly improve the solution. First, from the

highly nonlocal approximation of the desired solution Ũ0 we
compute an improved form of the nonlocal term,

�̃1 =
1

2�
� � e−�r� − r���2/2�Ũ0�r����2d2r��, �A1�

and use it to get a new eigenvalue problem Ã1v=�v. By

solving this new problem, we get Ũ1 which, again, can be
used in the next iteration and so on. There is no guarantee

that Ũn converges to the exact solution U, and in general it
does not. However, by computing the residuum of Eq. �1�
with U= Ũn it is possible to monitor the progress of the it-
eration process. Figure 8 shows two examples of this tech-
nique, performed on the dipole and quadrupole states at

power P =1000. The actual �̃ used are shown in Fig. 9. In
0
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both cases, the initial guess Ũ0 �Figs. 8�a� and 8�c�� com-
puted from �̃0= P0 exp�−r2 /2� /2� �see Fig. 9�a�� can be im-
proved by six and four iterations, respectively �Figs. 8�b� and
8�d��. The actual test of the approximate solutions is pro-
vided by employing them as initial data and propagating over
a certain distance z. The results are presented in the respec-
tive insets of Fig. 8 which show that soliton solutions are
stable �at least over a propagation distance of z=10�. Of
course, since we treat a nonintegrable system, these solitons
are expected to possess internal modes �48�. If we use an
approximate solution as initial data, some of these internal
modes become excited and cause oscillations of the soliton
amplitude. The better the approximation, the weaker the os-
cillations. This fact is clearly visible when comparing the
plots in Fig. 8�a� and 8�c� and 8�b� and 8�d�, respectively.

These two examples show that it is possible to compute
useful approximate solutions using the above iteration tech-
nique. The big advantage is its efficiency since the computa-
tions involved take only a couple of seconds on up-to-date
computers. Moreover, it turns out that the technique can be
used with non-Gaussian response functions, like Eqs. �4� and
�5�, as well. In fact, all solutions presented in this paper were

computed as described above.
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